Использование масок в IP-адресации

Часто администраторы сетей испытывают неудобства из-за того, что количество централизованно выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например, разместить все слабо взаимодействующие компьютеры по разным сетям. Проблему можно решить при помощи использования технологии масок, которая позволяет разделять одну сеть на несколько сетей.

Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

· класс А - 11111111. 00000000. 00000000. 00000000 (255.0.0.0);

· класс В - 11111111.11111111. 00000000. 00000000 (255.255.0.0);

· класс С-11111111.11111111.11111111.00000000(255.255.255.0).

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации.

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0 то есть в двоичном виде:

IP-адрес 129.64.134.5 - 10000001. 01000000.10000110. 00000101

Маска 255.255.128.0 - 11111111. 11111111. 10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000

или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.



Допустим, администратор получил в свое распоряжение адрес класса В: 129.44.0.0. Он может организовать сеть с большим числом узлов, номера которых он может брать из диапазона 0.0.0.1-0.0.255.254 (с учетом того, что адреса из одних нулей и одних единиц имеют специальное назначение и не годятся для адресации узлов). Однако ему не нужна одна большая неструктурированная сеть, производственная необходимость диктует администратору другое решение, в соответствии с которым сеть должна быть разделена на три отдельных подсети, при этом трафик в каждой подсети должен быть надежно локализован. Это позволит легче диагностировать сеть и проводить в каждой из подсетей особую политику безопасности.

Посмотрим, как решается эта проблема путем использования механизма масок.

Итак, номер сети, который администратор получил от поставщика услуг, — 129.44.0.0 (10000001 00101100 00000000 00000000). В качестве маски было выбрано значение 255.255.192.0 (111111111111111111000000 00000000). После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 (стандартная длина поля номера сети для класса В) до 18 (число единиц в маске), то есть администратор получил возможность использовать для нумерации подсетей два дополнительных бита. Это позволяет ему сделать из одного, централизованно заданного ему номера сети, четыре:

129.44.0.0 (10000001 00101100 00000000 00000000)

129.44.64,0 (10000001 00101100 01000000 00000000)

129.44,128.0 (10000001 00101100 10000000 00000000)

129.44.192,0 (10000001 00101100 11000000 00000000)

Два дополнительных последних бита в номере сети часто интерпретируются как номера подсетей (subnet), и тогда четыре перечисленных выше подсети имеют номера 0 (00), 1 (01), 2 (10) и 3 (И) соответственно.



Сеть, получившаяся в результате проведенной структуризации, показана на рис. … Весь трафик во внутреннюю сеть 129.44.0.0, направляемый из внешней сети, поступает через маршрутизатор Ml. В целях структуризации информационных потоков во внутренней сети установлен дополнительный маршрутизатор М2.

Все узлы были распределены по трем разным сетям, которым были присвоены номера 129.44.0.0, 129.44.64.0 и 129.44.128.0 и маски одинаковой длины — 255.255.192.0. Каждая из вновь образованных сетей была подключена к соответственно сконфигурированным портам внутреннего маршрутизатора М2. Кроме того, еще одна сеть (номер 129.44.192.0, маска 255.255.192.0) была выделена для создания соединения между внешним и внутренним маршрутизаторами. Особо отметим, что в этой сети для адресации узлов были заняты всего два адреса 129.44.192.1 (порт маршрутизатора М2) и 129.44.192.2 (порт маршрутизатора Ml), еще два адреса 129.44.192.0 и 129.44.192.255 являются особыми адресами. Следовательно, огромное число узлов (214 - 4) в этой подсети никак не используются.

В результате использования масок маршрутизатор М2 будет направлять поступившие извне пакеты в одну из трех подсетей, например, IP-адрес 129.44.141.15 (10000001 00101100 10001101 00001111), который при использовании классов делится на номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски 255.255.192.0, будет интерпретироваться как пара: 129.44.128.0 — номер сети, 0.0.13.15 — номер узла.

Извне сеть по-прежнему выглядит, как единая сеть класса В, а на местном уровне это полноценная составная сеть, в которую входят три отдельные сети. Приходящий общий трафик разделяется местным маршрутизатором М2 между этими сетями в соответствии с таблицей маршрутизации. (Заметим, что разделение большой сети, имеющей один адрес старшего класса, например А или В, с помощью масок несет в себе еще одно преимущество по сравнению с использованием нескольких адресов стандартных классов для сетей меньшего размера, например С. Оно позволяет скрыть внутреннюю структуру сети предприятия от внешнего наблюдения и тем повысить ее безопасность.)

Рассмотрим более сложный случай использования масок переменной длины, т.е. деления сети на подсети разного размера.

На рис. …. приведен пример распределения адресного пространства, при котором избыточность имеющегося множества IP-адресов может быть сведена к минимуму. Половина из имеющихся адресов (215) была отведена для создания сети с адресом 129.44.0.0 и маской 255.255.128.0. Следующая порция адресов, составляющая четверть всего адресного пространства (214), была назначена для сети 129.44.128.0 с маской 255.255.192.0. Далее в пространстве адресов был «вырезан» небольшой фрагмент для создания сети, предназначенной для связывания внутреннего маршрутизатора М2 с внешним маршрутизатором Ml.

Рис. ….. Разделение адресного пространства сети класса В 129.44.0.0 на сети разного размера путем использования масок переменной длины

В IP-адресе такой вырожденной сети для поля номера узла как минимум должны быть отведены два двоичных разряда. Из четырех возможных комбинаций номеров узлов: 00, 01,10 и 11 два номера имеют специальное назначение и не могут быть присвоены узлам, но оставшиеся два 10 и 01 позволяет адресовать порты маршрутизаторов. В нашем примере сеть была выбрана с некоторым запасом - на 8 узлов. Поле номера узла в таком случае имеет 3 двоичных разряда, маска в десятичной нотации имеет вид 255.255.255.248, а номер сети, как видно из рис. …, равен в данном конкретном случае 129.44.192.0. Если эта сеть является локальной, то на ней могут быть расположены четыре узла помимо двух портов маршуртизаторов.

Оставшееся адресное пространство администратор может «нарезать» на разное количество сетей разного объема в зависимости от своих потребностей. Из оставшегося пула (214 - 4) адресов администратор может образовать еще одну достаточно большую сеть с числом узлов 213. При этом свободными останутся почти столько же адресов (213 - 4), которые также могут быть использованы для создания новых сетей. К примеру, из этого «остатка» можно образовать 31 сеть, каждая из которых равна размеру стандартной сети класса С, и к тому же еще несколько сетей меньшего размера. Ясно, что разбиение может быть другим, но в любом случае с помощью масок переменного размера администратор всегда имеет возможность гораздо рациональнее использовать все имеющиеся у него адреса.

На рис. … показана схема сети, структурированной с помощью масок переменной длины


8196132976315801.html
8196188152632100.html
    PR.RU™